Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage

نویسندگان

  • Minshu Li
  • Zhiguo Li
  • Honglei Ren
  • Wei-Na Jin
  • Kristofer Wood
  • Qiang Liu
  • Kevin N Sheth
  • Fu-Dong Shi
چکیده

Microglia are the first responders to intracerebral hemorrhage, but their precise role in intracerebral hemorrhage remains to be defined. Microglia are the only type of brain cells expressing the colony-stimulating factor 1 receptor, a key regulator for myeloid lineage cells. Here, we determined the effects of a colony-stimulating factor 1 receptor inhibitor (PLX3397) on microglia and the outcome in the context of experimental mouse intracerebral hemorrhage. We show that PLX3397 effectively depleted microglia, and the depletion of microglia was sustained after intracerebral hemorrhage. Importantly, colony-stimulating factor 1 receptor inhibition attenuated neurodeficits and brain edema in two experimental models of intracerebral hemorrhage induced by injection of collagenase or autologous blood. The benefit of colony-stimulating factor 1 receptor inhibition was associated with reduced leukocyte infiltration in the brain and improved blood-brain barrier integrity after intracerebral hemorrhage, and each observation was independent of lesion size or hematoma volume. These results demonstrate that suppression of colony-stimulating factor 1 receptor signaling ablates microglia and confers protection after intracerebral hemorrhage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A TSPO ligand attenuates brain injury after intracerebral hemorrhage

Intracerebral hemorrhage (ICH) is a devastating disease without effective treatment. After ICH, the immediate infiltration of leukocytes and activation of microglia are accompanied by a rapid up-regulation of the 18-kDa translocator protein (TSPO). TSPO ligands have shown anti-inflammatory and neuroprotective properties in models of CNS injury. In this study, we determined the impact of a TSPO ...

متن کامل

Administration of recombinant human granulocyte colony-stimulating factor (rhG-CSF) for the intracranial hemorrhage in two dogs: a case report

Two dogs with generalized seizures were evaluated. The dogs were diagnosed with traumatic intracranial hemorrhages based on the history, neurological examinations, and magnetic resonance imaging (MRI) of the brain. Treatment was started with oxygen, prednisolone and anticonvulsant agents. No further seizure activity was observed after treatment in both dogs, however cushing reflex was detected ...

متن کامل

P84: Effect of Insulin-Like Growth Factor 2 (IGF2) as a Microglia-Derived Anti-Iinflammatory Ccytokine on Improving Memory Impairment Following Hippocampal Intracerebral Hemorrhage in Rat

Insulin-like growth factor 2 (IGF2) as a microglia-derived anti-inflammatory cytokine has a pivotal activity in memory consolidation. However, there is limited evidence on brain cell-originated IGF2 expression, regulation and function in pathological condition and neuro-inflammation. Hence, the present study was conducted to investigate the effect of IGF2 on improving the memory impairment in a...

متن کامل

Microglia overexpressing the macrophage colony-stimulating factor receptor are neuroprotective in a microglial-hippocampal organotypic coculture system.

Microglia with increased expression of the macrophage colony-stimulating factor receptor (M-CSFR; c-fms) are found surrounding plaques in Alzheimer's disease (AD) and in mouse models for AD and after ischemic or traumatic brain injury. Increased expression of M-CSFR causes microglia to adopt an activated state that results in proliferation, release of cytokines, and enhanced phagocytosis. To de...

متن کامل

Neurobiology of Disease Microglia Overexpressing the Macrophage Colony- Stimulating Factor Receptor Are Neuroprotective in a Microglial–Hippocampal Organotypic Coculture System

Microglia with increased expression of the macrophage colony-stimulating factor receptor (M-CSFR; c-fms) are found surrounding plaques in Alzheimer’s disease (AD) and in mouse models for AD and after ischemic or traumatic brain injury. Increased expression of M-CSFR causes microglia to adopt an activated state that results in proliferation, release of cytokines, and enhanced phagocytosis. To de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2017